
Coupled-channel version of the PT-symmetric square well

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 441

(http://iopscience.iop.org/0305-4470/39/2/014)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 03/06/2010 at 04:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 441–455 doi:10.1088/0305-4470/39/2/014

Coupled-channel version of the PT-symmetric square
well

Miloslav Znojil
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Abstract
A coupled pair of PT-symmetric square wells is studied as a prototype of a
quantum system characterized by two manifestly non-Hermitian commuting
observables. Via the diagonalization of our Hamiltonian H �= H † and spin-like
observable � �= �†, we demonstrate that there exists a domain of couplings
where both the respective sets of eigenvalues En, n = 0, 1, . . . (energies), and
σ = ±1 (‘spin projections’) remain real. In such a ‘measurable’ regime,
the model acquires a consistent probabilistic interpretation mediated by our
selection of one of many available interaction-dependent scalar products.

PACS numbers: 03.65.Ca, 03.65.Ge

1. Introduction

One of the keys to the proposal of PT-symmetric quantum mechanics (PTSQM) by Bender and
Boettcher [1] lay in the reality of the spectrum of the imaginary one-dimensional oscillator
well V(cubic)(x) ∼ ix3. Although the rigorous confirmation of that fundamental as well as
phenomenologically welcome property of the model was delivered a few years later [2], the
proof remains rather abstract and complicated [3]. For this reason, a lot of parallel attention has
been paid to the other, exactly solvable non-Hermitian potentials with real spectra [4]. People
studied partially solvable (often called quasi-exact) analytic alternatives to V(cubic)(x) ∼ ix3

[5] as well as non-analytic square-well potentials of similar type [6] and their singular point-
interaction limits [7].

Solvable choices proved particularly suitable for illustrative purposes. Their study
clarified that the PTSQM formalism may be understood as a very natural extension of quantum
mechanics, not requiring any new formulation of the ‘first principles’. For a review, we may
recommend the recent dedicated Workshops’ proceedings [8].

We intend to broaden the scope of the current PT-symmetric models beyond their popular
ordinary differential equation (ODE) framework. We feel motivated by the observation that
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the majority of existing applications of the innovative PTSQM formalism concerns systems
characterized by a single physical observable. We intend to fill the gap by an introduction
of a model possessing a doublet of commuting independent observables (section 2). Our
square-well-type model is solvable and intuitively transparent (section 3). It exemplifies a
number of generic features of PTSQM systems (cf discussion in section 4). Its appeal and
properties are summarized in section 5.

A number of technical details are separated in appendices A (an account of the perturbation
representation of energies), B (summarizing the PTSQM formulism in a modified Dirac’s
notation), C (on norms) and D (on the single-channel projection).

2. The model

2.1. PT -symmetry and its generalizations

The productivity of the counterintuitive PTSQM approach has been mainly revealed via studies
of specific, concrete examples. Many of them proved too exceptional. Typically, one may
recollect the elementary, exactly solvable spiked harmonic oscillator of [9] with its complete
confluence of all the infinitely many ‘exceptional points’ defined as the couplings at which
two neighbouring real energies merge and complexify [10].

Among the less exceptional toy models, many conjectures have been deduced from
discontinuous solvable potentials. The simplest, purely imaginary piecewise constant potential
of [6] with single discontinuity contributed to our understanding of the mechanisms of
stabilization of the real spectra [11]. Supersymmetric partners of this potential have been
found obtainable by non-numerical means [12]. The study of its physical aspects and classical
limit proved facilitated by its perturbative tractability [13]. A model independence of most of
these observations was confirmed by the long-range square-well model with two discontinuities
[14], by the short-range model with three discontinuities [15] and by the harmonic oscillator
decorated with two delta-function discontinuities [16].

All the above-mentioned solvable models offered an independent support for the inspiring
conjecture of [1] that the reality of spectra is related to the so-called PT-symmetry of the
potentials. This connects the observed absence of the complex energy eigenvalues with the
invariance of the Hamiltonians with respect to the combined action of a complex conjugation
T and a parity reversal P,PT H = HPT (cf [17]).

The latter type of symmetry gave its name to all the PTSQM formalism. Beyond
the simplest ODE Hamiltonians, the emphasis on the parity and time reversal meaning
of the operator PT may be weakened [18]. Thus, the parity P may be replaced by an
arbitrary invertible self-adjoint operator P or, in a less confusing notation, θ . In parallel,
the meaning of the complex conjugation T = T −1 may be extended to all the Hermitian-
conjugation involutions A → A† = T AT −1 [19]. The PTSQM concepts become applicable
to nonsymmetric operators and the PT-symmetry becomes reinterpreted as the property

H † = θHθ−1, θ = θ † (1)

called θ -pseudo-Hermiticity of H [20].
An appreciation of the subtlety of the latter generalization requires a non-ODE model

possessing more than one observable. We intend to describe here such a model in detail.

2.2. Two coupled channels

The frequent use of the coupling of channels in physics [21, 22] attracted our attention to the
partitioned
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θ = θ † =
(

0 G
G 0

)
, θ−1 =

(
0 G−1

G−1 0

)
(2)

with any parity-type invertible sub-operator G = G† which is not necessarily involutive.
A coupled pair of equal-mass particles moving in single spatial dimension inside a deep

square-well box will be considered, exhibiting the symmetry (1) + (2) of their non-Hermitian
Hamiltonian H = H(kinetic) + H(interaction). In units h̄ = 2m = 1 we shall have

H(kinetic) =
(

− d2

dx2 0

0 − d2

dx2

)
, H(interaction) =

(
Va(x) Wb(x)

Wa(x) Vb(x)

)
. (3)

The pseudo-metric (2) commutes with the kinetic (i.e. differential) operator H(kinetic) so that the
θ -pseudo-Hermiticity condition (1) will degenerate to an explicit definition of Vb = G−1V

†
a G

and to the two G-pseudo-Hermiticity relations

W †
a = GWaG−1, W

†
b = GWbG−1.

Although we emphasized the generality of the operatorG acting in the single-channel subspace,
we shall simplify the discussion by a return to the common parity reversal in what follows,
G = P .

In order to select a specific channel-coupling interaction in (3), we shall pick up a
maximally simplified, purely imaginary piecewise constant potential such that Re Va,b(x) =
Re Wa,b(x) = 0 and

Im Wa(x) = X > 0, Im Wb(x) = Y > 0, x ∈ (−1, 0),

Im Wa(x) = −X, Im Wb(x) = −Y, x ∈ (0, 1),

Im Va(x) = Im Vb(x) = Z, x ∈ (−1, 0),

Im Va(x) = Im Vb(x) = −Z, x ∈ (0, 1).

(4)

This non-Hermitian model of the coupling of channels is defined in terms of its three real
parameters X, Y and Z. This represents an immediate generalization of the single-channel
square well of [6] in which the spectrum happened to be real at all the not too large coupling
constants [23]. Basically, we intend to prove the same for equation (4).

3. Solutions

3.1. Non-Hermitian symmetry �

Hamiltonian H of equation (3) enters the coupled-channel Schrödinger equation

H

(
ϕ(x)

χ(x)

)
= E

(
ϕ(x)

χ(x)

)
. (5)

It specifies the bound states of the model when accompanied by the current asymptotic
boundary condition rescaled to L = 1,(

ϕ(x)

χ(x)

)∣∣∣∣
x=±L

=
(

0
0

)
. (6)

A merit of such a choice of the example is that its two-by-two Hamiltonian of equation (3)
commutes with the spin-like constant matrix

� =
(

0 ω−1

ω 0

)
, ω =

√
X

Y
> 0.
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It plays the role of another non-Hermitian ‘observable’. Its eigenvalues σ = ±1 are real and
it exhibits also the θ -pseudo-Hermiticity property,

�† = θ�θ−1.

The existence of the symmetry � implies that the Schrödinger equation (5) may be
complemented by the fixed-spin constraint

�

(
ϕσ (x)

χσ (x)

)
= σ

(
ϕσ (x)

χσ (x)

)
. (7)

It gives the relation between the channels at both the spin eigenvalues σ = ±1,

χσ (x) = σωϕσ (x). (8)

For the sake of brevity we shall mostly drop the subscript σ in what follows.

3.2. Wavefunctions

The connection (8) between the channels reduces the system of equations (5) to the single,
σ -dependent linear differential equation with the piecewise constant coefficients,

− d2

dx2
ϕn(x) + [Va(x) + σωWb(x)]ϕn(x) = Enϕn(x), x ∈ (−1, 1). (9)

The necessary incorporation of the ‘asymptotic’ boundary conditions (6) further reduces its
general solutions to the ansatz

ϕ(x) =
{
A sin κL(x + 1), x ∈ (−1, 0),

C sin κR(1 − x), x ∈ (0, 1).
(10)

The insertion of this ansatz in equation (9) gives the linear relations

E = κ2
L + i(Z + σ

√
XY) = κ2

R − i(Z + σ
√

XY), (11)

which define the energy and connect κL with κR at any given, fixed value of σ = ±1.
Once we expect that the energies are observable, we have to assume that all their values

E = En remain real. Conversely, we are persuaded that for a certain fairly broad class of
the coupled-channel non-Hermitian interactions and equations on a finite interval, the general
rigorous proof of the existence of a non-empty physical domain of parameters (where the
energies remain real) may be based on the straightforward extension of the proof delivered
by Langer and Tretter in the single-channel case [24]. For our present purposes, we shall feel
satisfied by the less ambitious approach paralleling simply the single-channel construction
of [6].

Within our physical domain D of the real X, Y,Z and E the inspection of equations (11)
and (10) reveals that we may set κL = κ∗

R = κ = s − it . At a fixed spin σ this redefines

E = s2 − t2, Z = 2st − σ
√

XY (12)

in terms of some new pair of real parameters s and t. We may keep one of them positive
(say, s > 0) while the second one lies on a branch of a hyperbolic curve,

t = tσ (s) = 1

2s
Zeff(σ ), Zeff(σ ) = Z + σ

√
XY, σ = ±1. (13)

We see that the energies remain non-degenerate with respect to the spin σ in general.
The quantization will be mediated by the requirement of the continuity of the

wavefunctions ϕ(x) and χ(x) and of their first derivatives at x = 0. These conditions
degenerate to the single pair of complex equations

A sin κ = C sin κ∗, Aκ cos κ = −Cκ∗ cos κ∗.
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The first item fixes the normalization (A = C sin κ∗/ sin κ) while the elimination of C gives
the complex constraint Re(κ−1 tan κ) = 0. It is equivalent to the single, σ -independent real
secular equation

s sin 2s + t sinh 2t = 0. (14)

Our construction of bound states is completed. They are determined by formulae (10) and
(12) while their free parameters s and t must be fixed by the pair of equations (13) and (14).
A few comments on the practical, numerical and perturbative evaluation of the roots (sn, tn)

may be found in appendix A.

4. Interpretation of the solutions

One does not leave the standard textbook quantum mechanics (STQM) whenever feeling
satisfied by the Hilbert space H(physical) where the scalar product (i.e. metric operator � in its
definition (a, b)(physical) = 〈a|�|b〉) is kept trivial, �(STQM) ≡ I . In contrast, one is allowed
and advised to admit a nontrivial metric within PTSQM framework, �(PTSQM) �= I [25].

In the latter setting, it is important to keep in mind that the non-Hermiticity of the operators
of observables (i.e. of H and � in our present illustrative example) might lead to some confusion
in the standard Dirac’s ‘bra-ket’ notation. For this reason, the slightly modified ‘brabra-ket’
notation of [22] is advocated and summarized in appendix B.

4.1. Physical metric �

The extended flexibility of PTSQM formalism is compensated by the necessity of an explicit
construction of a consistent physical metric operator �(PTSQM) �= θ . It must be Hermitian
(� = �†) and positive definite (� > 0). The new freedom broadens the class of the
observables H = O(j)

(PTSQM), j = 1, 2, . . . , M , which must be quasi-Hermitian, i.e. by
definition, Hermitian in our new metric,

H † = �H�−1. (15)

According to the review paper [26], the introduction of the observables of this type may be
made in a mathematically consistent as well as phenomenologically appealing manner. From
a pragmatic point of view, it proved particularly productive in nuclear physics where M > 1
as a rule.

Requirement (15) looks difficult to satisfy, especially in less elementary quantum systems.
The key to the technical feasibility of the transition STQM → PTSQM has been found in
the existence of an indeterminate, auxiliary pseudo-metric P (renamed as θ , in our coupled-
channel equation (1), in an attempt to avoid its easy confusion with a very similar symbol
P for parity). This means that one should speak, strictly speaking, about a θT -symmetric
quantum mechanics throughout our text.

One usually proceeds in an opposite direction, from a (preferably, very simple) pseudo-
metric to metric. Thus, a complete set of eigenstates of a given set of θ -pseudo-Hermitian
observables is constructed in the first step, and the proof of the reality of the energies is then
added as quite a difficult task. In this sense, our present solvable model may serve as a source
of an insight in the properties of the wavefunctions (cf section 3.2) as well as of the domain of
the reality of the spectrum (cf appendix A).

On this background let us now address the correct physical interpretation of the theory. It
is to be achieved via a specification of the physical metric, to be constructed as a Hermitian
and positive definite solution � = �† > 0 of equation (15). Its knowledge will enable us to
treat any quasi-Hermitian operator A with the property A† = �A�−1 as an observable.
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Once we start from the spectral representation (B.4) of H (cf appendix B), we may recall
the property H †� = �H and infer that

� =
∑

E,σ,F,τ

|F, τ 〉〉SF,τ,E,σ 〈〈E, σ |. (16)

The choice of the expansion coefficients S must remain compatible with equation (15) and
with the symmetry �. This gives the conditions

SE,σ,F,τ (E
∗ − F) = 0, SE,σ,F,τ (σ − τ) = 0.

The spectrum of energies is assumed real so that the off-diagonal part of the array S must
vanish. We may replace the quadruple sum (16) by the double-sum ansatz

� =
∑
n,σ

|En, σ 〉〉Sn,σ 〈〈En, σ |. (17)

It represents the formal solution of equation (15) and contains the infinite sequence of arbitrary
coefficients Sn,σ . Whenever they do not vanish, Sn,σ �= 0, the operator (17) is formally
invertible,

�−1 =
∑
n,σ

|En, σ 〉 1/Sn,σ

〈En, σ |En, σ 〉〉 · 〈〈En, σ |En, σ 〉 〈E, σ |.

The necessary [26] Hermiticity of � is guaranteed when all the parameters Sn,σ remain real.
The necessary positivity of � (which means its tractability as a genuine physical metric) will
be achieved whenever all the coefficients remain positive, Sn,σ > 0.

We see that the acceptable metric (17) compatible with all the standard physical
requirements exists (at least in the formal sense) and is non-unique. One is allowed to
impose some other mathematical or physical requirements [18, 27].

4.2. Normalization conventions and the norm

In our bound-state solutions |En, σ 〉 of equation (10), we are free to use any complex
‘normalization’ constants C = Cn,σ . The same freedom of choice applies to another series of
the normalization constants which would appear in the similar formulae for the ‘left’ eigenkets
〈〈En, σ |. This is unaffected by the observation of appendix B that the respective definitions
(B.1) and (B.2) are connected by the pseudo-Hermiticity property (1). One can only conclude
that in all the non-degenerate cases the following proportionality rule remains valid,

|E, σ 〉 ∼ θ−1|E∗, σ ∗〉〉.
For E = E∗ and σ = σ ∗ at Z < Zcrit we may treat the latter rule as a definition of the
eigenkets |·, ·〉〉 ∈ H up to a normalization,

|E, σ 〉〉 = θ |E, σ 〉
(optional)
Eσ , E = E0, E1, . . . = real, σ = ±1. (18)

The explicit solution of the left eigenproblem (B.2) is made redundant but the freedom in the
choice of a convenient relative normalization (RN) factor 


(optional)
Eσ survives.

The same factor emerges in the following formula for the overlaps between eigenstates,

〈〈En′ , σ ′|En, σ 〉 = δσσ ′δnn′

(optional)
Enσ

〈En, σ |θ |En, σ 〉, n, n′ = 0, 1, . . . , σ, σ ′ = ±1.

(19)

Before its deeper analysis, one may consult appendix C which shows how our coupled-
channel Hilbert space H may be partitioned into two single-channel subspaces Hc. This
partitioning is prescribed there in such a way that our (free) choice of an overall normalization
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coefficient entering the right eigenstate |En, σ 〉 is unambiguously inherited by its single-
channel components |ϕn〉 via equation (C.1). In parallel, an independent choice of the
coefficient in each left eigenstate 〈〈En, σ | is transferred to its single-channel components
by equation (C.2).

On this background we must interrelate our full space and subspace RN conventions. The
factor 


(optional)
Enσ

introduced in the full space H may differ from its subspace partner λ
(optional)
Enσ

of equation (C.3). By construction, fortunately, both these quantities happen to coincide
(cf equation (C.5) and the rest of appendix C for more details of the proof). As a consequence,
the partitioning enables us to replace the non-vanishing overlaps in (19) by the much simpler
matrix elements (C.4).

An inspection of formulae (19) and (C.4) reveals that the absolute value of the self-overlap
〈〈E, σ |E, σ 〉 may be rescaled to one by an appropriate choice of the ‘normalization’ constants
C = Cn,σ in equation (10). We also restrict the RN factors by the similar condition while their
sign remains free, 


(optional)
Enσ

= ±1. The key consequence lies in the fact that the sign of all the
non-vanishing self-overlaps (C.4) is fully controlled by the sign of our optional RN factor. In
an opposite direction, we have a freedom to prescribe such a specific set 


(special)
Enσ

= ±1 which
guarantees the positivity of all the ‘special’ self-overlaps. Thus, in the light of equation (C.4)
we simply postulate 〈〈En, σ |En, σ 〉(special) > 0, i.e.

σ

(special)
En,σ

〈n|P|n〉 > 0. (20)

After one evaluates the matrix element, this equation defines the dynamically determined
‘physical’ RN factors which make our basis biorthonormal,

〈〈En′ , σ ′|En, σ 〉(special) = δσσ ′δnn′ .

The (positive-definite) ‘physical’ norm

‖|En, σ 〉‖(physical) = √〈〈E, σ |E, σ 〉(special)

of our bound states is obtained as a byproduct. This definition may be extended to all the
elements of H via completeness relations (B.3) [18, 20, 28].

4.3. Quasi-parity Q

In the literature, people call the rescaled RN coefficients a ‘charge’ [18] or ‘quasi-parity’ [29].
It is important to note that in our present example their explicit determination is not difficult
since the matrix elements 〈n|P|n〉 may be evaluated in a closed form. Due to the purely
trigonometric character of the wavefunctions (10) we have

1

AA∗ 〈n|P|n〉 =
∫ 0

−1
sin κ∗(x + 1) sin κ(−x + 1) dx +

∫ 1

0
sin κ(−x + 1) sin κ∗(x + 1) dx

= 1

2s
sin 2scosh 2t − 1

2t
cos 2s sinh 2t.

The n-dependence of this element is particularly transparent at the higher excitations with
large s = O(n) and small |t | = O(1/n). Our exact formula degenerates to its leading-order
estimate

1

AA∗ 〈n|P|n〉 = −cos 2s + O
(

1

n

)
= (−1)n cos Qn + O

(
1

n

)
= (−1)n + O

(
1

n

)
.
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Thus, the ‘charge’ or ‘quasi-parity’ is specified by the closed formula



(special)
Enσ

= (−1)nσ, σ = ±1, n � 1

at the higher excitations.
Quasi-parities may now be interpreted as eigenvalues of a certain operator Q,

Q|En, σ 〉 = |En, σ 〉
(special)
Enσ

. (21)

We insert equation (21) in (18) and deduce that

〈〈En′ , σ ′|En, σ 〉(special) = 〈En′ , σ ′|θQ|En, σ 〉, n, n′ = 0, 1, . . . , σ, σ ′ = ±1. (22)

This identification defines an overlap of two different vectors using a specific scalar product
in H. In the light of section 4.1 such a particular product corresponds to a particular metric
operator,

�(particular) = θQ.

Combining this relation with equation (17) we get

S(special)
n,σ = 1

〈〈En, σ |En, σ 〉(special)
. (23)

Conversely, the violation of the one-to-one correspondence (23) between the metric and norm
would require an ‘artificial’ introduction of an n- and σ -dependence into our definition (21) of
the operator Q. In spite of some formal merits of such a step [13], we are persuaded that the
related ‘anisotropy’ of both the operators Q and �(particular) could hardly find a natural physical
foundation.

4.4. The crossings and degeneracies of levels

Although the Hamiltonian H and ‘spin’ � (and wavefunctions) of our model depend on three
parameters, its energy spectrum itself feels merely the influence of Z and of the product XY .
In the light of equation (A.5) the two sources of non-Hermiticity are the ‘internal’ strength
Z and the ‘coupling’ strength

√
XY . Still, the distinction between X and Y is nontrivial.

At X = Y �= 0 giving a ‘symmetrized’ coupling of channels, the operator of symmetry �

becomes, incidentally, Hermitian.
A strongly asymmetric decoupling of our model may be achieved by the two alternative

limiting transitions, namely Y �= 0, X → 0 and X �= 0, Y → 0. Each of them suppresses just
one of the channels (cf (C.1)). In both these limits the symmetry � ceases to exist. One gets
ω → ∞ or 1/ω → ∞ and our present method of solution becomes inapplicable.

A much more interesting limiting transition Z → 0 (from both sides, i.e. Z → 0+ and
Z → 0−) converts our model into a coupled set of two Hermitian square wells. In this limit,
the violation of the Hermiticity of the whole system is merely caused by the channel-coupling
terms. The energies E = s2 − t2 degenerate with respect to the spin since tσ (s) = σ |tσ (s)|
so that, in fact, the neighbouring σ = ±1 levels cross at Z = 0. No point of the crossing
is ‘exceptional’ since the corresponding wavefunctions remain linearly independent. Their
Wronskian W does not vanish and both our observables H and � remain diagonalizable. In
contrast to some other solvable examples (say, to the harmonic oscillator of [9]), no Jordan-
block structures emerge in H.

For the sufficiently small Zeff , all the similar observations may be made quantitative.
Taking the ground state n = 0 and setting Zeff = O(λ) while Z = O(λ2) for definiteness, we
deduce that t = O(λ) (cf equation (13)). Next we convert equation (14) with s = π/2 + ε

and a small ε = ε0 (cf equation (A.1) in appendix A) into the leading-order estimate of
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ε = 4t2/π +· · ·. All this transforms the definition of the energy into the following approximate
formula:

E0 = s2
0 − t2

0 = π2

4
+

3XY

π2
− σZ

6
√

XY

π2
+ O(λ4).

As long as tσ (s) = σ |tσ (s)|, the ground state has the ‘spin’ σ = +1 at Z > 0 and σ = −1
at Z < 0 while it becomes doubly degenerate at Z = 0. At this point, the Wronskian easily
evaluates to a non-vanishing constant, W = ACκ∗ sin 2κ∗. Hence, the two lowest states
remain linearly independent at Z = 0.

5. Summary

The appeal of virtually all the PTSQM constructions may be seen in a universality of
their transition from a simple though indefinite pseudo-metric θ to the correct physical and
dynamically determined positive-definite metric �. The procedure is counterintuitive and
a number of open questions emerge. We designed our present less trivial coupled-channel
example to clarify some mathematical subtleties (like the necessary conditions of the reality of
the spectrum in non-Hermitian models), a deeper understanding of which requires, typically,
a nontrivial application of the Krein-space theory [24].

We believe that the explanation of many interrelated subtleties of the PTSQM recipe may
be facilitated via square-well models which offer one of the most economical combinations
of a transparent dynamical picture with an exact solvability of the underlying equations based
on the usual matching technique. Our specific present example illustrates, first of all, a
phenomenologically important situation where the dynamics is controlled by more observable
quantities.

An unexpected merit of our model has been found in a quick convergence of the auxiliary
perturbation expansions of its energy-level parameters s = sn (such that E = s2 − const/s2)
in the weak-coupling regime (i.e. for small strengths of the non-Hermiticity |Z| and |XY |)
and/or in the quasi-classical regime (i.e. at the higher excitations with n � 1). Another
highly welcome byproduct of the square-well solvability emerged as a non-Hermitian spin-
type symmetry � of H. It enabled us to reduce our nontrivial (namely coupled-channel)
Schrödinger equation to its much more easily tractable ‘model-space’ reduction. In parallel,
the existence of the symmetry enabled us to analyse a level-degeneracy and level-crossing
phenomena in a neat, non-numerical manner.

The elementary algebraic structure of our model facilitated a clarification of one of the
most puzzling PTSQM requirements of keeping all the observables �-quasi-Hermitian and,
at the same time, θ -pseudo-Hermitian in the Hilbert space H. The coupled-channel (i.e.
partitioned) structure of the model enabled us to clarify the mechanism of this correspondence
anew. In particular, we showed that the quasi-parity-based factorization � = θQ as introduced
in [28] appears mathematically more natural than the alternative charge-based factorization
� = CP of [18], with P = θ in our present notation. Indeed, while the quasi-parity
is a symmetry of the Hamiltonian itself (we have [H,Q] = 0), the formally equivalent
introduction of the charge C in [18] implies that [H †, C] = 0. This means that the charge is
merely a symmetry of an operator H † �= H defined as a Hermitian-conjugate partner of the
Hamiltonian.

Due to the existence of the second, θ -pseudo-Hermitian and �-quasi-Hermitian spin-
like observable � in our model, another persuasive manifestation of a deep relevance of
the symmetries of H has been revealed in the interrelations between the full space Hilbert
space H and its reduced, single-channel subspace Hc. Pars pro toto, the quasi-parity-
related factorization � = θQ of the metric in full space H has been proved accompanied
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by its analogue (D.3) using two relative quasi-parities R(σ ) defined within the single-channel
subspace Hc.

The idea of the coupling of channels may turn attention to the systems treated
perturbatively in more dimensions [30] as well as to non-perturbative explanations of the
observed transitions between regular and chaotic classical and quantum motion controlled by
the partial differential equations (PDE) [31]. Via our example, some existing confirmations
of the internal consistency of the PTSQM theory may find their extension to the coupled-
channel scenario. On this basis, ‘next’ moves in the PTSQM development may be predicted
as aiming at the non-separable PDE models [32] where some aspects of our model might
inspire a more intensive exploration of the level-degeneracy patterns in non-Hermitian
context [33], etc.
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Appendix A. Perturbation series for the energies

PTSQM models usually require some sufficiently efficient numerical description which is,
typically, perturbative [34]. It may mediate an alternative or quicker insight even in the
solvable models. Conversely, the exact solvability of our present model offers an explicit
verification of the approximative approaches.

The predominantly trigonometric oscillatory character of the functions entering our
secular equation (14) enables us to locate and count all its physical roots,

s = sn = (n + 1)π

2
+ (−1)n

Qn

2
, n = 0, 1, . . . (A.1)

where the new parameter Qn remains small in the weak-coupling regime (i.e. for all the
sufficiently small X, Y and Z) as well as at all the sufficiently large n. This enables us to
abbreviate

1

(n + 1)π
= 
 ≡ 1

L
,

2Zeff(σ )

L
= α,

2Zeff(σ )

L2
= β = α


and to rewrite our secular equation (14) in terms of these new ‘small’ parameters and a sign
factor τ = (−1)n,

Q = arcsin

(
2t




1 + τQ

sinh 2t

)
, 2t = α

1 + τQ

. (A.2)

As long as

arcsin(x) = x +
1

6
x3 +

3

40
x5 +

5

112
x7 + · · ·

we may iterate equation (A.2) and observe that the α- and β-dependence of Q = Q(α, β)

must acquire the following general asymptotic-series form:

Q = Q(α, β) = αβ�(α, β), �(α, β) =
∞∑

k,�=0

α2kβ2�ck� (A.3)

where c00 = 1. In practice, this series should be truncated in α as well as in β or, equivalently,
in 
. Nevertheless, as long as the size of β = 
α is dominated by α, it is sufficient to analyse
this series as a power series expansion in the single ‘small’ parameter α. It is also worth noting
that at any fixed power of α there is always just a finite number of the related powers of 
.
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For illustration, let us set

�(α, β) = 1 + c10α
2 + c01β

2 + c20α
4 + c11α

2β2 + c02β
4 + O(α6)

and insert this formula in the rearranged equation (A.2),

[1 + τβ2�(α, β)] arcsinh

{
[1 + τβ2�(α, β)]2 1

β
sin[αβ�(α, β)]

}
= α. (A.4)

As long as we can employ the regular Taylor series

1

β
sin[αβ�(α, β)] = α + (c10 + c01


2)α3 + [c20 + (c11 − 1/6)
2 + c02

4]α5 + O(α7)

the left-hand side of equation (A.4) evaluates to a power series in our small parameters. The
tedious though straightforward calculation converts the resulting equation into the infinite
series dominated by the leading-order identity

0 = (− 1
6 + c10 + c01


2 + 3τ
2
)
α3 + · · · .

It determines the first two coefficients,

c10 = 1
6 , c01 = −3τ.

Their insertion simplifies the next-order O(α5) identity to the similar linear algebraic relation
which defines the next set of the coefficients in �(α, β),

c20 = 1

120
, c11 = 1 − 8τ

6
, c02 = 15.

In this manner one may continue the construction of the solution (A.3) to an arbitrary order
in α.

In the original notation we may now write down the second-order formula

Qn = 4Z2
eff

(n + 1)3π3
+

8Z4
eff

3(n + 1)5π5

(
1 +

18(−1)n+1

(n + 1)2π2

)
+ O

(
Z6

eff

(n + 1)7

)
.

The convergence in 1/(n + 1) is amazingly rapid and the role and weight of the non-
Hermiticity decrease very quickly with the growth of the excitation n.

In the single-channel limit where X = Y = 0, it has been observed that the growth of
|Z| = |Zeff| makes some of the low-lying energies move towards each other. With the growth
of the absolute value of Z the first pair (in fact, E0 and E1) merges and complexifies beyond
the critical value of Zcrit ≈ 4.48 [6, 23]. In the coupled-channel context we may repeat
the same mathematical analysis leading, mutatis mutandis, to the conclusion that all the
observable values of energies E = En and quasi-spins σ remain real in the weakly non-
Hermitian regime defined by the pair of inequalities |Zeff(σ )| < Zcrit, σ = ±1. They may be
compressed into a single condition

|
√

XY | + |Z| < Zcrit ≈ 4.48. (A.5)

In contrast to the single-channel case, the energy spectrum now ceases to be real at
Z = ±(Zcrit − √

XY), i.e. along two distinct surfaces in the space of parameters.

Appendix B. Modified Dirac’s notation

Our pair of operators H and � samples a complete set of non-Hermitian commuting
observables. These operators enter the Schrödinger equation (5) with quasi-spin constraint
(7), i.e. in Dirac’s notation, the pair of equations

H |E, σ 〉 = E|E, σ 〉, �|E, σ 〉 = σ |E, σ 〉. (B.1)
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As long as H † �= H and �† �= �, the eigenkets |·, ·〉 in (B.1) differ from the simultaneous
eigenvectors of H † and �†. In the spirit of [22], let us now adapt Dirac’s notation to the
non-Hermitian scenario and equip the latter elements of our Hilbert space H by the double
delimiter. The apparently unmotivated complex conjugation of the energies and spins in their
implicit definition

H †|E, σ 〉〉 = E∗|E, σ 〉〉, �†|E, σ 〉〉 = σ ∗|E, σ 〉〉
becomes explained after the Hermitian conjugation which reveals the ‘left-action’ essence of
these equations,

〈〈E, σ |H = E〈〈E, σ |, 〈〈E, σ |� = σ 〈〈E, σ |. (B.2)

For this reason we shall prefer the use of the ket-vector form of the ‘right’ eigenfunctions
|E, σ 〉 in combination with the doubly delimited (or ‘brabra-vector’) form 〈〈E, σ | of their
‘left-eigenfunction’ partners.

Although both the latter sequences of vectors are defined, strictly speaking, in the two
equivalent copies of the same Hilbert space of states H, our notation conventions will allow us
to shorten the discussion here and there. As we already emphasized, our ‘redundant’ version of
the common Dirac’s notation is transparent and proves more consistent in the non-Hermitian
setting. Moreover, in the physical regime where E = E∗ and σ = σ ∗ the two pairs of
Schrödinger equations (B.1) and (B.2) imply the biorthogonality relations for their solutions
which are easily written down now as

〈〈E′, σ ′|E, σ 〉(E′ − E) = 0, 〈〈E′, σ ′|E, σ 〉(σ ′ − σ) = 0.

In the general non-degenerate case, these rules only admit the non-vanishing overlaps at
E′ = E and σ ′ = σ . Conversely, unless one of the self-overlaps vanishes accidentally, it is
easy to derive the formal completeness relations

I =
∑
E,σ

|E, σ 〉 1

〈〈E, σ |E, σ 〉 〈〈E, σ |. (B.3)

Their use enables us to treat our set of two sequences of states 〈〈E, σ | and |E, σ 〉 as a
biorthogonalized basis giving straightforward formal expansions of any element |α〉 ≡ I ·|α〉 ∈
H or |β〉〉 ≡ I † · |β〉〉 ∈ H. Thus, one derives

H =
∑
E,σ

|E, σ 〉 E

〈〈E, σ |E, σ 〉 〈〈E, σ |, � =
∑
E,σ

|E, σ 〉 σ

〈〈E, σ |E, σ 〉 〈〈E, σ | (B.4)

as two samples of an extension of the usual spectral representation to (arbitrary) operators
emerging in the non-Hermitian coupled-channel context. These formulae are needed in
section 4.1.

Appendix C. Partitioning of H into two subspaces Hc

In equation (19) we may employ the partitioned notation,

|En, σ 〉 =
(

|ϕn〉 · √
Y

|ϕn〉 · σ
√

X

)
, σ = ±1, n = 0, 1, . . . (C.1)

where the subkets |ϕn〉 are σ -dependent solutions of equation (9). In a left-action alternative
to this formula let us put

〈〈En, σ | = (σ
√

X〈〈χn|,
√

Y 〈〈χn|), σ = ±1, n = 0, 1, . . . (C.2)
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where the new subcomponents 〈〈χn| are defined by a left-action version of equation (9).
More precisely, the left eigenstates 〈〈χn| and the right eigenstates |ϕn〉 correspond to the same
reduced and spin-dependent parity-pseudo-Hermitian single-channel sub-Hamiltonian

H(σ) = − d2

dx2
+ Va + σωWb = PH †(σ )P,

which acts in the single-channel Hilbert subspace Hc and which is, in the language of [1],
truly PT -symmetric.

The partitioning clarifies the structure of the spectral representations of the operators in
our basis. All of them may be derived from the elementary projectors

|E, σ 〉〈〈E, σ | =
(

|ϕn〉 · σ
√

XY · 〈〈χn| |ϕn〉 · Y · 〈〈χn|
|ϕn〉 · X · 〈〈χn| |ϕn〉 · σ

√
XY · 〈〈χn|

)

entering, say, equation (B.4). They may be understood as acting in two copies of Hc in
H = Hc

⊕
Hc. We may abbreviate |ϕn〉 ≡ |n〉 and 〈〈χn| ≡ 〈〈n| and collect the reduced

Schrödinger equations,

H(σ)|n〉 = En|n〉, 〈〈n|H(σ) = En〈〈n|, n = 0, 1, . . . .

They are to be solved in a single copy of Hc where their comparison leads to an alternative
RN convention

|n〉〉 = P|n〉λ(optional)
Enσ

(C.3)

paralleling equation (18). We must check that and how both these normalizations remain
mutually compatible. For this purpose we start from the RN definition (18) and add the
partitioning (C.1) or, alternatively, start from the partitioning (C.2) and insert definition (C.3)
afterwards. In the former case we proceed via equation (19) and get

〈〈E, σ |E, σ 〉 = 2σ
(



(optional)
Enσ

)∗√
XY 〈n|P|n〉. (C.4)

In the latter case we have

〈〈E, σ |E, σ 〉 = 2σ
√

XY 〈〈n|n〉 = 2σ
(
λ

(optional)
Enσ

)∗√
XY 〈n|P|n〉.

A comparison of these two results reveals that

λ
(optional)
Enσ

≡ 

(optional)
Enσ

. (C.5)

Our two apparently independent RN constants must be chosen equal to each other.

Appendix D. Quasi-parity in the subspaces Hc

When we move to the single-channel subspace Hc we encounter the two different bases {|n〉}
distinguished by the ‘external’ parameter σ . We have to fix σ = +1 or σ = −1 in |n〉 = |nσ 〉.
This means that in a subspace analogue of equation (21) we have to define the two ‘reduced
quasi-parities’ as operators R(σ ) in Hc with a manifest dependence on the spin,

R(σ )|n〉 = R(σ )|nσ 〉 = |n〉
(special)
Enσ

.

At a fixed value of the spin σ we obtain a subspace counterpart of equation (22),

〈〈n′
σ |nσ 〉(special) = 〈n′

σ |PR(σ )|nσ 〉, n, n′ = 0, 1, . . . . (D.1)

Although the spin-dependent product PR(σ ) plays just a not too important role of a subspace
metric, its formal prolongation from Hc to the full space H is feasible and may be performed
as follows. First, one verifies that the action of the σ -dependent auxiliary operator

S(σ ) =
(

0 σω−1R(σ )

σωR(σ ) 0

)
= σ�R(σ )
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obeys the fixed-spin relation

S(σ )|En, σ 〉 = σR(σ )|n〉�
(√

Y

σ
√

X

)
= |En, σ 〉
(special)

Enσ
.

A transition to the spin-independent formula will be then most naturally mediated by an
introduction of the two two-by-two-matrix projectors �σ = (I + σ�)/2,

�σS(σ )�σ |En, σ 〉 = |En, σ 〉
(special)
Enσ

, σ = ±1.

We may conclude that the spin-independent quasi-parity operator in the full space H may be
defined by the formula Q = ∑

σ=±1 �σS(σ )�σ . In the partitioned notation we may rewrite
this operator in the matrix form,

Q = 1

2

(
R(+1) + R(−1) ω−1[R(+1) − R(−1)]

ω[R(+1) − R(−1)] R(+1) + R(−1)

)
.

A return to another representation in terms of the projectors �σ is now possible,

Q =
∑

σ=±1

R(σ )�σ . (D.2)

We see here that the two operators R(σ ) may be perceived as representing ‘reduced’ quasi-
parities in Hc. The new version of the factorization formula for the metric is delivered in the
same spirit,

�(special) = 1

2

(
ω[PR(+1) − PR(−1)] PR(+1) + PR(−1)

PR(+1) + PR(−1) ω−1[PR(+1) − PR(−1)]

)
.

In the light of equation (D.2), this formula represents our factorized metric �(special) = θQ as
a weighted sum of two factorized items equipped with the appropriate spin projectors,

�(special) = 1

2

∑
σ=±1

(
σω 1
1 σω−1

)
PR(σ ) =

∑
σ=±1

(
0 PR(σ )

PR(σ ) 0

)
�σ . (D.3)

This conclusion is compatible with formulae (C.4) and (22).
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Jakubský V and Znojil M 2004 Czech. J. Phys. 54 1101
Weigert S 2005 Czech. J. Phys. 55 1183

[24] Langer H and Tretter C 2004 Czech. J. Phys. 54 1113
[25] Mostafazadeh A 2002 J. Math. Phys. 43 2814 and 3944
[26] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys., NY 213 74
[27] Geyer H B, Scholtz F G and Snyman I 2004 Czech. J. Phys. 54 1069

Kretschmer R and Szymanowski L 2004 Phys. Lett. A 325 112
[28] Znojil M 2001 LANL report math-ph/0104012, reprinted 2004 Rendiconti del Circ. Mat. di Palermo, Ser. II 72

(Suppl.) 211
[29] Bagchi B and Quesne C 2000 Phys. Lett. A 273 285

Bagchi B, Quesne C and Znojil M 2001 Mod. Phys. Lett. A 16 2047
Sinha A and Roy P 2004 Czech. J. Phys. 54 129

[30] Caliceti E 2004 Czech. J. Phys. 54 29
Caliceti E 2005 Czech. J. Phys. 55 1077

[31] Ahmed Z and Jain S R 2003 Phys. Rev. E 67 R045106
Nanayakkara A and Abayaratne Ch 2003 Can. J. Phys. 81 835

[32] Znojil M and Tater M 2001 J. Phys. A: Math. Gen. 34 1793
Bender C M, Dunne G V, Meisinger P N and Simsek M 2001 Phys. Lett. A 281 311
Basu-Mallick B, Bhattacharyya T, Kundu A and Mandal B P 2004 Czech. J. Phys. 54 5
Jakubský V 2004 Czech. J. Phys. 54 67

[33] Nanayakkara A 2005 Phys. Lett. A 334 144
Bı́la H, Tater M and Znojil M 2005 Phys. Lett. A (Comment) submitted

[34] Caliceti E, Graffi S and Maioli M 1980 Commun. Math. Phys. 75 51
Fernández F M, Guardiola R, Ros J and Znojil M 1998 J. Phys. A: Math. Gen. 31 10105
Bender C M 2004 Czech. J. Phys. 54 1027
Bı́la H 2004 Czech. J. Phys. 54 1049
Jones H F 2004 Czech. J. Phys. 54 1107

http://dx.doi.org/10.1103/PhysRevLett.86.787
http://dx.doi.org/10.1007/s100530170017
http://dx.doi.org/10.1007/s10582-005-0113-z
http://dx.doi.org/10.1063/1.1803928
http://dx.doi.org/10.1142/S0217732302008009
http://dx.doi.org/10.1088/0305-4470/37/48/009
http://dx.doi.org/10.1063/1.1925249
http://dx.doi.org/10.1007/s10582-005-0122-y
http://dx.doi.org/10.1007/s10582-005-0110-2
http://dx.doi.org/10.1088/0305-4470/26/20/035
http://dx.doi.org/10.1103/PhysRevLett.89.270401
http://dx.doi.org/full_text
http://www.arxiv.org/abs/hep-th/0408081
http://www.arxiv.org/abs/quant-ph/0310164
http://dx.doi.org/10.1103/PhysRevLett.92.119902
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1088/0305-4470/30/15/034
http://dx.doi.org/10.1088/0264-9381/20/1/312
http://dx.doi.org/10.1088/0305-4470/37/40/016
http://dx.doi.org/10.1142/S0217732301005722
http://dx.doi.org/10.1023/B:CJOP.0000044010.18569.bd
http://dx.doi.org/10.1007/s10582-005-0126-7
http://dx.doi.org/10.1023/B:CJOP.0000044012.95629.b2
http://dx.doi.org/10.1063/1.1461427
http://dx.doi.org/10.1016/0003-4916(92)90284-S
http://dx.doi.org/10.1023/B:CJOP.0000044007.58266.a0
http://dx.doi.org/10.1016/j.physleta.2004.03.044
http://dx.doi.org/10.1016/S0375-9601(00)00512-0
http://dx.doi.org/10.1142/S0217732301005333
http://dx.doi.org/10.1023/B:CJOP.0000014377.24971.31
http://dx.doi.org/10.1023/B:CJOP.0000014364.39013.01
http://dx.doi.org/10.1007/s10582-005-0109-8
http://dx.doi.org/10.1103/PhysRevE.67.045106
http://dx.doi.org/10.1139/p03-052
http://dx.doi.org/10.1088/0305-4470/34/8/321
http://dx.doi.org/10.1016/S0375-9601(01)00146-3
http://dx.doi.org/10.1023/B:CJOP.0000014362.68271.14
http://dx.doi.org/10.1023/B:CJOP.0000014369.89531.94
http://dx.doi.org/10.1016/j.physleta.2004.11.019
http://dx.doi.org/10.1007/BF01962591
http://dx.doi.org/10.1088/0305-4470/31/50/008
http://dx.doi.org/10.1023/B:CJOP.0000044001.97758.c7
http://dx.doi.org/10.1023/B:CJOP.0000044003.15478.08
http://dx.doi.org/10.1023/B:CJOP.0000044011.16303.00

	1. Introduction
	2. The model
	2.1. calPT
	2.2. Two coupled channels

	3. Solutions
	3.1. Non-Hermitian symmetry 
	3.2. Wavefunctions

	4. Interpretation of the solutions
	4.1. Physical metric 
	4.2. Normalization conventions and the norm
	4.3. Quasi-parity
	4.4. The crossings and degeneracies of levels

	5. Summary
	Acknowledgment
	Appendix A. Perturbation series for the energies
	Appendix B. Modified Dirac's notation
	Appendix C. Partitioning
	Appendix D. Quasi-parity in

	References

